[Proposed] df0.03~0.1

Author

김보람

Published

February 22, 2024

imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    
df_results = try_6(fraudTrain, 0.03,1e7,0.8)
df_results = try_6(fraudTrain, 0.02,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.01,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.9,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.8,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.7,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.6,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.5,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.4,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.3,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.1,1e7,0.8, prev_results=df_results)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.973626 0.660944 0.299029 0.411765 0.971025 True Proposed 0.030000 150150 amt 0.029710 50050 0.030869 None 10000000.0 0.8
1 GCN None 0.983310 0.726891 0.235534 0.355784 0.972262 True Proposed 0.020000 225225 amt 0.020144 75075 0.019567 None 10000000.0 0.8
2 GCN None 0.990436 0.707692 0.119171 0.203991 0.895770 True Proposed 0.010000 450450 amt 0.009906 150150 0.010283 None 10000000.0 0.8
3 GCN None 0.976633 0.976547 0.998003 0.987158 0.950314 True Proposed 0.900045 5004 amt 0.900080 1669 0.899940 None 10000000.0 0.8
4 GCN None 0.967501 0.968244 0.992032 0.979993 0.971374 True Proposed 0.800053 5630 amt 0.799290 1877 0.802344 None 10000000.0 0.8
5 GCN None 0.949184 0.957171 0.971673 0.964367 0.955698 True Proposed 0.700000 6435 amt 0.697436 2145 0.707692 None 10000000.0 0.8
6 GCN None 0.942070 0.937049 0.966847 0.951715 0.962575 True Proposed 0.600000 7507 amt 0.603170 2503 0.590491 None 10000000.0 0.8
7 GCN None 0.936397 0.912484 0.962661 0.936901 0.964254 True Proposed 0.500000 9009 amt 0.503164 3003 0.490509 None 10000000.0 0.8
8 GCN None 0.927544 0.881068 0.950262 0.914358 0.964189 True Proposed 0.400000 11261 amt 0.397656 3754 0.407032 None 10000000.0 0.8
9 GCN None 0.936663 0.853101 0.951007 0.899397 0.972655 True Proposed 0.300000 15015 amt 0.300766 5005 0.297702 None 10000000.0 0.8
10 GCN None 0.930075 0.816248 0.840637 0.828263 0.973986 True Proposed 0.200000 22522 amt 0.199805 7508 0.200586 None 10000000.0 0.8
11 GCN None 0.945721 0.771200 0.645680 0.702880 0.976863 True Proposed 0.100000 45045 amt 0.100189 15015 0.099434 None 10000000.0 0.8
try_6(fraudTrain, 0.01,1e8,0.8)
try_6(fraudTrain, 0.01,1e9,0.8, prev_results=df_results)
try_6(fraudTrain, 0.01,1e10,0.8, prev_results=df_results)
try_6(fraudTrain, 0.01,1e8,0.9, prev_results=df_results)
try_6(fraudTrain, 0.01,1e7,0.9, prev_results=df_results)
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results