import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_6(fraudTrain, 0.03,1e7,0.8)
df_results = try_6(fraudTrain, 0.02,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.01,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.9,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.8,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.7,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.6,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.5,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.4,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.3,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.1,1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.973626 | 0.660944 | 0.299029 | 0.411765 | 0.971025 | True | Proposed | 0.030000 | 150150 | amt | 0.029710 | 50050 | 0.030869 | None | 10000000.0 | 0.8 |
1 | GCN | None | 0.983310 | 0.726891 | 0.235534 | 0.355784 | 0.972262 | True | Proposed | 0.020000 | 225225 | amt | 0.020144 | 75075 | 0.019567 | None | 10000000.0 | 0.8 |
2 | GCN | None | 0.990436 | 0.707692 | 0.119171 | 0.203991 | 0.895770 | True | Proposed | 0.010000 | 450450 | amt | 0.009906 | 150150 | 0.010283 | None | 10000000.0 | 0.8 |
3 | GCN | None | 0.976633 | 0.976547 | 0.998003 | 0.987158 | 0.950314 | True | Proposed | 0.900045 | 5004 | amt | 0.900080 | 1669 | 0.899940 | None | 10000000.0 | 0.8 |
4 | GCN | None | 0.967501 | 0.968244 | 0.992032 | 0.979993 | 0.971374 | True | Proposed | 0.800053 | 5630 | amt | 0.799290 | 1877 | 0.802344 | None | 10000000.0 | 0.8 |
5 | GCN | None | 0.949184 | 0.957171 | 0.971673 | 0.964367 | 0.955698 | True | Proposed | 0.700000 | 6435 | amt | 0.697436 | 2145 | 0.707692 | None | 10000000.0 | 0.8 |
6 | GCN | None | 0.942070 | 0.937049 | 0.966847 | 0.951715 | 0.962575 | True | Proposed | 0.600000 | 7507 | amt | 0.603170 | 2503 | 0.590491 | None | 10000000.0 | 0.8 |
7 | GCN | None | 0.936397 | 0.912484 | 0.962661 | 0.936901 | 0.964254 | True | Proposed | 0.500000 | 9009 | amt | 0.503164 | 3003 | 0.490509 | None | 10000000.0 | 0.8 |
8 | GCN | None | 0.927544 | 0.881068 | 0.950262 | 0.914358 | 0.964189 | True | Proposed | 0.400000 | 11261 | amt | 0.397656 | 3754 | 0.407032 | None | 10000000.0 | 0.8 |
9 | GCN | None | 0.936663 | 0.853101 | 0.951007 | 0.899397 | 0.972655 | True | Proposed | 0.300000 | 15015 | amt | 0.300766 | 5005 | 0.297702 | None | 10000000.0 | 0.8 |
10 | GCN | None | 0.930075 | 0.816248 | 0.840637 | 0.828263 | 0.973986 | True | Proposed | 0.200000 | 22522 | amt | 0.199805 | 7508 | 0.200586 | None | 10000000.0 | 0.8 |
11 | GCN | None | 0.945721 | 0.771200 | 0.645680 | 0.702880 | 0.976863 | True | Proposed | 0.100000 | 45045 | amt | 0.100189 | 15015 | 0.099434 | None | 10000000.0 | 0.8 |
0.01,1e8,0.8)
try_6(fraudTrain, 0.01,1e9,0.8, prev_results=df_results)
try_6(fraudTrain, 0.01,1e10,0.8, prev_results=df_results)
try_6(fraudTrain, 0.01,1e8,0.9, prev_results=df_results)
try_6(fraudTrain, 0.01,1e7,0.9, prev_results=df_results)
try_6(fraudTrain, f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results